

Course E-Syllabus

1	Course title	Nuclear and Radiochemistry		
2	Course number	0333323		
3	Credit hours	3		
	Contact hours (theory, practical)	3 week		
4	Prerequisites/corequisites	Chem 102		
5	Program title	Bsc		
6	Program code	3		
7	Awarding institution	The University of Jordan		
8	School	Science		
9	Department	Chemistry Department		
10	Level of course	Third		
11	Year of study and semester (s)	Fall 2023/2024		
12	Final Qualification			
13	Other department (s) involved in teaching the course			
14	Language of Instruction	Mixed English with Arabic		
15	Teaching methodology	□Blended ⊠Online		
16	Electronic platform(s)	⊠Moodle ⊠Microsoft Teams □Skype □Zoom □Others		
17	Date of production/revision	5/11/2023		

18 Course Coordinator:

Name: Prof Dr Fawwaz I. Khalili Office number: 25 Phone number: 22142 Email: fkhalili@ju.edu.jo

19 Other instructors:

Name:
Office number:
Phone number:
Email:
Name:
Office number:
Phone number:
Email:

20 Course Description:

A This course will ensure that students become conversant with the following main aspects of chemistry:

A1 Major aspects of nuclear and radiochemical terminology, nomenclature, conventions and units. A2 The major types of nuclear stability, nuclear and radiochemical reactions and decay and the main characteristics associated with them.

A3 Equations of radioactive growth and decay and transformations during nuclear reactions.

A4 The principles and procedures used in nuclear and radiochemical analysis and the

characterization of nuclear and radiochemical compounds.

A5 The characteristics of the different methods of interactions of radiations with matter and the theories used to describe them.

A6 The principles and types of nuclear detection instruments.

s stated in the approved study plan.

-

21 Course aims and outcomes:

To install in students a sense of enthusiasm for nuclear chemistry, an appreciation of its application in different contexts and to involve them in an intellectually stimulating and satisfying experience of learning and studying.

_ To provide students with a broad and balanced foundation of nuclear chemical knowledge and practical skills.

_ To develop in students the ability to apply their nuclear chemical knowledge and skills to the solution of theoretical and practical problems in nuclear and radiochemistry.

_ To develop in students, through an education in nuclear and radiochemistry, a range of transferable skills, of value in chemical and non-chemical employment.

_ To provide students with a knowledge and skills base from which they can proceed to further studies in specialized areas of nuclear and radiochemistry or multi-disciplinary areas involving

nuclear and radiochemistry.

_ To generate in students an appreciation of the importance of nuclear and radiochemistry in an industrial, economic, environmental and social context.

A- Aims:

B1 Ability to demonstrate knowledge and understanding of essential facts, concepts, principles and theories relating to the subject areas identified above.

B2 Ability to apply such knowledge and understanding to the solution of qualitative and quantitative problems of a familiar and unfamiliar nature.

B3 Ability to recognize and analyze novel problems and plan strategies for their solution.

B4 Skills in the evaluation, interpretation and synthesis of nuclear and radiochemical information and data.

B6 Ability to recognize and implement good measurement science and practice.

B7 Skills in presenting scientific material and arguments clearly and correctly, in writing and orally, to a range of audiences.

B8 Computational and data-processing skills, relating to nuclear and radiochemical information and data.

B- Intended Learning Outcomes (ILOs):

Upon successful completion of this course, students will be able to:

This course will ensure that students become conversant with the following main aspects of chemistry:

A1 Major aspects of nuclear and radiochemical terminology, nomenclature, conventions and units. A2 The major types of nuclear stability, nuclear and radiochemical reactions and decay and the main

characteristics associated with them.

A3 Equations of radioactive growth and decay and transformations during nuclear reactions.

A4 The principles and procedures used in nuclear and radiochemical analysis and the characterization of nuclear and radiochemical compounds.

A5 The characteristics of the different methods of interactions of radiations with matter and the theories used to describe them.

A6 The principles and types of nuclear detection instruments.

22. Topic Outline and Schedule:

Introduction	3
Atomic nuclei	6
Radioactive Decay Processes	7
Equations of radioactive Decay and growth	7
Interaction of radiation with matter	10
Nuclear energy and fission	9
Total	42

Week	Lectur e	Торіс	Teaching Methods*/platform	Evaluation Methods**	References
	1.1	Introduction			
	1.2				
1	1.3	Radioactive decay			
	1.4				
	1.5	Cosmic ray			
	2.1	Atomic structure			
	2.2				
2	2.3	Isotopes			
	2.4	•			
	2.5	Nuclear stability			
	3.1	Mass defect			
	3.2				
3	3.3	Semiempirical Binding energy equation			
	3.4				
	3.5	Mass Parabola			
	4.1	Conservation laws			
	4.2				
4	4.3	Alpha decay			
	4.4				
	4.5	Beta decay			
	5.1	Gamma decay			
	5.2	· · · ·			
5	5.3	Spontaneous fission			
	5.4				
	5.5	Decay schemes			
	6.1	Closed energy cycle			
_	6.2				
6	6.3	Equation of decay			
	6.4				
	6.5	Average life			
	7.1	Decay of mixtures			
	7.2				
7	7.3	Growth of products			
	7.4	F			
	7.5	Secular equilibrium			
0	8.1	Successive decay			
8	8.2				

	8.3	<u>Units of</u> radioactivity		
	8.4			I
	8.5	Interaction of radiation with matter		
	9.1	Range		I
	9.2			1
9	9.3	Stopping power		1
	9.4			I
	9.5	Range energy relation		
	10.1	Electrons		l
	10.2			l
10	10.3	Gama ray		l
	10.4			I
	10.5	Pair production		1
	11.1	X- ray		I
	11.2			l
11	11.3	Radiation protetion		
	11.4			1
	11.5	Internal radiation sources		
	12.1	Nuclear energy		
	12.2			
12	12.3	Nuclear reactor		
	12.4			
	12.5	Energy in fission		
	13.1	Nuclear fission		
	13.2			
13	13.3	Fission models		
	13.4			
	13.5	Oklo phenomenon		
	14.1	Radioactive wastes		
	14.2			1
14	14.3	Solid wastes		
	14.4			
	14.5	Nuclear bombs]

- Teaching methods include: Synchronous lecturing/meeting; Asynchronous lecturing/meeting
- Evaluation methods include: Homework, Quiz, Exam, pre-lab quiz...etc

23 Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment

	Second -third	
Ch 1 and 2	week	Microsoft
	Six -Seventh	
Ch 3, 4, 5	week	Microsoft
		Microsoft form
All chapters	Final week	or model
+		l
	Ch 1 and 2 Ch 3, 4, 5 All chapters	Ch 1 and 2weekCh 3, 4, 5Six -Seventh weekAll chaptersFinal week

24 Course Requirements (e.g: students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

students should have a computer, internet connection, webcam and an account on a Microsoft teams software/platform

25 Course Policies:

A- Attendance policies: yes

- B- Absences from exams and submitting assignments on time: As regulations permit
- C- Health and safety procedures: yes
- D- Honesty policy regarding cheating, plagiarism, misbehavior: yes
- E- Grading policy: As mentioned above

F- Available university services that support achievement in the course: Microsoft teams, forms and e learning

26 References:

A- Required book(s), assigned reading and audio-visuals:

- Nuclear and radiochemistry (Arabic) 2nd

By F. Khalili

B- Recommended books, materials and media:

- Nuclear and radiochemistry 3rd By G. Friedlander, J. W. Kennedy, E. S. Macias, J. M. Miller

27 Additional information:

Name of Course Coordinator: Fawwaz Khalili	Signature: Date: 6/11/2023
Head of Curriculum Committee/Department:	Signature:
Head of Department:	Signature:
Head of Curriculum Committee/Faculty:	Signature:
Dean:	Signature: